
I write the Mathematica code for this paper, On inventory replenishment with non-linear increasing demand, which had been published in Computers & Operations Research 29 (2002) 1819–1825

{H,c1,c2} = {1,9,2}
f[t_] := 900 t + 100 t^2;
g[t_] := Integrate[f[u], {u, t, H}] // Evaluate;
The algorithm
test[k_]:=Union[Nest[Sort[Flatten[Append[#,Table[(anstemp=NMaximize[{(t-#[[i]])*(g[t]-g[#[[i+1]]]),0<>c1,t/.anstemp[[2]],#[[i+1]]]),{i,Length[#]-1}]]]]&,{0,H},k]]
i = 1; While[True, If[TrueQ[test[i] == test[i + 1]], Break[]]; i++]; {i, test[i]}
{3, {0, 0.195414, 0.337524, 0.467143, 0.581866, 0.697343, 0.804015, 0.904759, 1}}
The inventory system
a = test[3];
Show[Plot[g[t], {t, 0, H}, PlotStyle -> Thickness[0.005],
Filling -> {1 -> {Bottom, Red}}],
Graphics[{EdgeForm[Dashed], White,
Rectangle[{a[[#]], 0}, {a[[# + 1]], g[a[[# + 1]]]}]}] & /@
Range[Length[a] - 1],
PlotRange -> {All, {0, 500}},
ImageSize -> 400
]

Demostration for the algorithm
b=NestList[Sort[Flatten[Append[#,Table[(anstemp=NMaximize[{(t-#[[i]])*(g[t]-g[#[[i+1]]]),0<>c1,t/.anstemp[[2]],#[[i+1]]]),{i,
Length[#]-1}]]]]&,{0,H},3];
Show[Plot[g[t], {t, 0, H}, PlotStyle -> Thickness[0.005]],
Table[Graphics[{EdgeForm[Dashed], RGBColor[Random[], Random[], Random[]],
Rectangle[{b[[i, #]], g[b[[i, # + 2]]]}, {b[[i, # + 1]], g[b[[i, # + 1]]]}]}] & /@
Range[Length[b[[i]]] - 2], {i, {4, 3, 2}}],
PlotRange -> {All, {0, 500}},
ImageSize -> 400
]

讀者回應 ( 0 意見 )
訂閱發佈留言 (Atom)
發佈留言
Please leave your name and tell me what you thought about this site. Comments, suggestions and views are welcomed.
如果這篇文章對你有幫助,那請留個訊息給我~