Stats

Popular Posts

Followers

Finally, the first acceptance of 2024 comes.

戴忠淵 於 2024年1月5日星期五 下午3:32 發表
A Sustainable Dynamic Optimization Model of Pricing and Advertising in the Presence of Green Innovation Investment

Chung-Yuan Dye and Tsu-Pang Hsieh

Finally, the acceptance from EJOR has arrived. The Julia code for the numerical examples in this paper is provided below. Alternatively, you can also implement it directly in Julia. Please leave a message if you have any problems with the implementation of the code.
julia=StartExternalSession["Julia"]

ExternalEvaluate[julia,"
using JuMP,Ipopt
dp(x)=(140-3*x);
K1(y)=(y/5-y^2/1000);
f1(x)=100*exp(-0.03*x);
f2(x)=2*exp(-0.045*x);
v1=25;
v2=10;
omega=300;
c=16.5;
h=0;
z=0.8;
"];

dynCP11=ExternalEvaluate[julia, "
	function dynCP11(G0,gamma1,gamma2,delta,k1coef,k2coef,e,r,varpi,n)
    m1 = Model(Ipopt.Optimizer) 
    set_silent(m1)
    #set_optimizer_attributes(m1, \"tol\" => 1e-4, \"max_iter\" => 100)
    register(m1, :dp, 1, dp; autodiff = true)
    register(m1, :K1, 1, K1; autodiff = true)
    register(m1, :f1, 1, f1; autodiff = true)
    register(m1, :f2, 1, f2; autodiff = true)
    @variable(m1, p[1:n], start = 30)
    @variable(m1, w[1:n], start = 10)
    @variable(m1, u[1:n], start = 10)

    @NLexpression(m1,newG[i=1:n],(1-delta)^(-1+i)*((1-delta)*G0
	+sum((gamma1*u[j+1]^k1coef+gamma2*w[j+1]^k2coef)/((1-delta)^j) 
    for j = 0:i-1)))
    
    @NLexpression(m1,newCE[i=1:n],f1(w[i])+f2(w[i])*dp(p[i])*K1(newG[i])-varpi)

    @NLobjective(
	m1,
	Max,
	sum(z^(i-1)*((p[i]-c-h/2)*dp(p[i])*K1(newG[i])
    -v1*u[i]^2/2-v2*w[i]^2/2-e*newCE[i])
                for i = 1:n))
	for i = 1:n
        @constraint(m1, p[i] >= c + h / 2)
	end
	for i = 1:n
        @constraint(m1, p[i] <= 140 / 3)
	end
	for i = 1:n
        @constraint(m1, w[i] >= 0)
	end
	for i = 1:n
        @constraint(m1, u[i] >= 0)
	end
	for i = 1:n
        @NLconstraint(m1, newCE[i] >= 0)
	end

	JuMP.optimize!(m1)

	p_val = JuMP.value.(p)
	w_val = JuMP.value.(w)
	u_val = JuMP.value.(u)

	G_val=(1-delta)*G0+gamma1*u_val[1]^k1coef+gamma2*w_val[1]^k2coef

	CE=f1(w_val[1])+f2(w_val[1])*dp(p_val[1])*K1(G_val)

	profit=(p_val[1]-c-h/2)*dp(p_val[1])*K1(G_val)
    -v1*u_val[1]^2/2-v2*w_val[1]^2/2-e*(CE-varpi)

	return[p_val,w_val,u_val,G_val,CE,profit,objective_value(m1)]

end"];

dynCP22=ExternalEvaluate[julia,"
	function dynCP22(G0,gamma1,gamma2,delta,k1coef,k2coef,e,r,varpi,n)
    m1 = Model(Ipopt.Optimizer) 
    set_silent(m1)
    #set_optimizer_attributes(m1, \"tol\" => 1e-4, \"max_iter\" => 100)
    register(m1, :dp, 1, dp; autodiff = true)
    register(m1, :K1, 1, K1; autodiff = true)
    register(m1, :f1, 1, f1; autodiff = true)
    register(m1, :f2, 1, f2; autodiff = true)
    @variable(m1, p[1:n], start = 30)
    @variable(m1, w[1:n], start = 10)
    @variable(m1, u[1:n], start = 10)

    @NLexpression(m1,newG[i=1:n],(1-delta)^(-1+i)*((1-delta)*G0
	+sum((gamma1*u[j+1]^k1coef+gamma2*w[j+1]^k2coef)/((1-delta)^j) 
    for j = 0:i-1)))
    
    @NLexpression(m1,newCE[i=1:n],f1(w[i])+f2(w[i])*dp(p[i])*K1(newG[i])-varpi)

    @NLobjective(
	m1,
	Max,
	sum(z^(i-1)*((p[i]-c-h/2)*dp(p[i])*K1(newG[i])
    -v1*u[i]^2/2-v2*w[i]^2/2-r*newCE[i])
                for i = 1:n))
	for i = 1:n
        @constraint(m1, p[i] >= c + h / 2)
	end
	for i = 1:n
        @constraint(m1, p[i] <= 140 / 3)
	end
	for i = 1:n
        @constraint(m1, w[i] >= 0)
	end
	for i = 1:n
        @constraint(m1, u[i] >= 0)
	end
	for i = 1:n
        @NLconstraint(m1, newCE[i] <= 0)
	end

	JuMP.optimize!(m1)

	p_val = JuMP.value.(p)
	w_val = JuMP.value.(w)
	u_val = JuMP.value.(u)

	G_val=(1-delta)*G0+gamma1*u_val[1]^k1coef+gamma2*w_val[1]^k2coef

	CE=f1(w_val[1])+f2(w_val[1])*dp(p_val[1])*K1(G_val)

	profit=(p_val[1]-c-h/2)*dp(p_val[1])*K1(G_val)
    -v1*u_val[1]^2/2-v2*w_val[1]^2/2-r*(CE-varpi)

	return[p_val,w_val,u_val,G_val,CE,profit,objective_value(m1)]

end"];

mysol13[g0_,\[Gamma]1_,\[Gamma]2_,\[Delta]_,k1_,k2_,e_,r_,cap_]:=
Block[{n=40,numiter=100,iter=0,ans1,ans2},
	Print[{Dynamic[iter],Dynamic[ans2]}];
	NestList[(
	iter=iter+1;
	ans1=
	SortBy[{
		dynCP11[#[[4]],\[Gamma]1,\[Gamma]2,\[Delta],k1,k2,e,r,cap,n],
		dynCP22[#[[4]],\[Gamma]1,\[Gamma]2,\[Delta],k1,k2,e,r,cap,n]},
          Last][[-1]];
	ans2={ans1[[1,1]],ans1[[2,1]],ans1[[3,1]],ans1[[4]],
          ans1[[5]],#[[-1]]+0.8^(iter-1)*ans1[[6]]})&,
	{0,0,0,g0,0,0},numiter][[2;;-1]]
]

myexample=mysol13[#[[1]],0.5,0.8,0.2,0.5,0.8,8,2,#[[2]]]&/@
Flatten[Table[{i,j},{j,{250,300,400}},{i,{10,40}}],1]

ListLinePlot[myexample[[All,All,#]],PlotRange->All,
Frame->True]&/@{1,2,3,4,5}//Column
Tags: , , ,

讀者回應 ( 0 意見 )

發佈留言

Please leave your name and tell me what you thought about this site. Comments, suggestions and views are welcomed.

如果這篇文章對你有幫助,那請留個訊息給我~